3.636 \(\int \frac {x^3}{(a^2+2 a b x^2+b^2 x^4)^{3/2}} \, dx\)

Optimal. Leaf size=41 \[ \frac {x^4}{4 a \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}} \]

[Out]

1/4*x^4/a/(b*x^2+a)/((b*x^2+a)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 69, normalized size of antiderivative = 1.68, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {1111, 640, 607} \[ \frac {a}{4 b^2 \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {1}{2 b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

-1/(2*b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + a/(4*b^2*(a + b*x^2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

Rule 607

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*(a + b*x + c*x^2)^(p + 1))/((2*p + 1)*(b + 2
*c*x)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 1111

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2] && Integ
erQ[(m - 1)/2] && (GtQ[m, 0] || LtQ[0, 4*p, -m - 1])

Rubi steps

\begin {align*} \int \frac {x^3}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {x}{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \, dx,x,x^2\right )\\ &=-\frac {1}{2 b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {a \operatorname {Subst}\left (\int \frac {1}{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \, dx,x,x^2\right )}{2 b}\\ &=-\frac {1}{2 b^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {a}{4 b^2 \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 39, normalized size = 0.95 \[ \frac {-a-2 b x^2}{4 b^2 \left (a+b x^2\right ) \sqrt {\left (a+b x^2\right )^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]

[Out]

(-a - 2*b*x^2)/(4*b^2*(a + b*x^2)*Sqrt[(a + b*x^2)^2])

________________________________________________________________________________________

fricas [A]  time = 1.16, size = 36, normalized size = 0.88 \[ -\frac {2 \, b x^{2} + a}{4 \, {\left (b^{4} x^{4} + 2 \, a b^{3} x^{2} + a^{2} b^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="fricas")

[Out]

-1/4*(2*b*x^2 + a)/(b^4*x^4 + 2*a*b^3*x^2 + a^2*b^2)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 32, normalized size = 0.78 \[ -\frac {2 \, b x^{2} + a}{4 \, {\left (b x^{2} + a\right )}^{2} b^{2} \mathrm {sgn}\left (b x^{2} + a\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="giac")

[Out]

-1/4*(2*b*x^2 + a)/((b*x^2 + a)^2*b^2*sgn(b*x^2 + a))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 32, normalized size = 0.78 \[ -\frac {\left (b \,x^{2}+a \right ) \left (2 b \,x^{2}+a \right )}{4 \left (\left (b \,x^{2}+a \right )^{2}\right )^{\frac {3}{2}} b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x)

[Out]

-1/4*(b*x^2+a)*(2*b*x^2+a)/b^2/((b*x^2+a)^2)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 1.38, size = 36, normalized size = 0.88 \[ -\frac {2 \, b x^{2} + a}{4 \, {\left (b^{4} x^{4} + 2 \, a b^{3} x^{2} + a^{2} b^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="maxima")

[Out]

-1/4*(2*b*x^2 + a)/(b^4*x^4 + 2*a*b^3*x^2 + a^2*b^2)

________________________________________________________________________________________

mupad [B]  time = 4.24, size = 42, normalized size = 1.02 \[ -\frac {\left (2\,b\,x^2+a\right )\,\sqrt {a^2+2\,a\,b\,x^2+b^2\,x^4}}{4\,b^2\,{\left (b\,x^2+a\right )}^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2),x)

[Out]

-((a + 2*b*x^2)*(a^2 + b^2*x^4 + 2*a*b*x^2)^(1/2))/(4*b^2*(a + b*x^2)^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\left (\left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b**2*x**4+2*a*b*x**2+a**2)**(3/2),x)

[Out]

Integral(x**3/((a + b*x**2)**2)**(3/2), x)

________________________________________________________________________________________